Extensions 1→N→G→Q→1 with N=C132C8 and Q=C22

Direct product G=N×Q with N=C132C8 and Q=C22
dρLabelID
C22×C132C8416C2^2xC13:2C8416,141

Semidirect products G=N:Q with N=C132C8 and Q=C22
extensionφ:Q→Out NdρLabelID
C132C81C22 = D8⋊D13φ: C22/C1C22 ⊆ Out C132C81044C13:2C8:1C2^2416,132
C132C82C22 = Q8⋊D26φ: C22/C1C22 ⊆ Out C132C81044+C13:2C8:2C2^2416,135
C132C83C22 = D526C22φ: C22/C1C22 ⊆ Out C132C81044C13:2C8:3C2^2416,153
C132C84C22 = D4⋊D26φ: C22/C1C22 ⊆ Out C132C81044+C13:2C8:4C2^2416,170
C132C85C22 = D8×D13φ: C22/C2C2 ⊆ Out C132C81044+C13:2C8:5C2^2416,131
C132C86C22 = SD16×D13φ: C22/C2C2 ⊆ Out C132C81044C13:2C8:6C2^2416,134
C132C87C22 = C2×D4⋊D13φ: C22/C2C2 ⊆ Out C132C8208C13:2C8:7C2^2416,152
C132C88C22 = C2×D4.D13φ: C22/C2C2 ⊆ Out C132C8208C13:2C8:8C2^2416,154
C132C89C22 = C2×Q8⋊D13φ: C22/C2C2 ⊆ Out C132C8208C13:2C8:9C2^2416,162
C132C810C22 = C2×C8⋊D13φ: C22/C2C2 ⊆ Out C132C8208C13:2C8:10C2^2416,121
C132C811C22 = M4(2)×D13φ: C22/C2C2 ⊆ Out C132C81044C13:2C8:11C2^2416,127
C132C812C22 = C2×C52.4C4φ: C22/C2C2 ⊆ Out C132C8208C13:2C8:12C2^2416,142
C132C813C22 = C2×C8×D13φ: trivial image208C13:2C8:13C2^2416,120

Non-split extensions G=N.Q with N=C132C8 and Q=C22
extensionφ:Q→Out NdρLabelID
C132C8.1C22 = D4.D26φ: C22/C1C22 ⊆ Out C132C82084-C13:2C8.1C2^2416,136
C132C8.2C22 = Q16⋊D13φ: C22/C1C22 ⊆ Out C132C82084C13:2C8.2C2^2416,139
C132C8.3C22 = Q8.D26φ: C22/C1C22 ⊆ Out C132C82084C13:2C8.3C2^2416,163
C132C8.4C22 = D4.9D26φ: C22/C1C22 ⊆ Out C132C82084-C13:2C8.4C2^2416,172
C132C8.5C22 = D83D13φ: C22/C2C2 ⊆ Out C132C82084-C13:2C8.5C2^2416,133
C132C8.6C22 = D26.6D4φ: C22/C2C2 ⊆ Out C132C82084C13:2C8.6C2^2416,137
C132C8.7C22 = Q16×D13φ: C22/C2C2 ⊆ Out C132C82084-C13:2C8.7C2^2416,138
C132C8.8C22 = D104⋊C2φ: C22/C2C2 ⊆ Out C132C82084+C13:2C8.8C2^2416,140
C132C8.9C22 = C2×C13⋊Q16φ: C22/C2C2 ⊆ Out C132C8416C13:2C8.9C2^2416,164
C132C8.10C22 = C52.C23φ: C22/C2C2 ⊆ Out C132C82084C13:2C8.10C2^2416,171
C132C8.11C22 = D52.3C4φ: C22/C2C2 ⊆ Out C132C82082C13:2C8.11C2^2416,122
C132C8.12C22 = D52.2C4φ: C22/C2C2 ⊆ Out C132C82084C13:2C8.12C2^2416,128
C132C8.13C22 = D4.Dic13φ: C22/C2C2 ⊆ Out C132C82084C13:2C8.13C2^2416,169
C132C8.14C22 = D13⋊C16φ: C22/C2C2 ⊆ Out C132C82084C13:2C8.14C2^2416,64
C132C8.15C22 = D26.C8φ: C22/C2C2 ⊆ Out C132C82084C13:2C8.15C2^2416,65
C132C8.16C22 = C2×C13⋊C16φ: C22/C2C2 ⊆ Out C132C8416C13:2C8.16C2^2416,72
C132C8.17C22 = C52.C8φ: C22/C2C2 ⊆ Out C132C82084C13:2C8.17C2^2416,73

׿
×
𝔽